
Isak Nyström, Daniel Lizotte, Muhammad Nabeel Numan,

Samuel Silva, Adrian Evertsson, Josie Lindsey-Clark

Newton
Fractals

NUMA01

Write a class fractal2D that is initialized with one
function and possibly its derivative.

Task 1

Write a method __Newton__ which takes an initial guess
as input

Task 2

f(x)
y1- y = f’(x)(x1- x)

Task 2

● For a matrix containing multiple variables, we
use the equation:

● Where the Jacobian matrix is:

Newton

Initial
guess

Jacobian

Divergence =
return string

‘No conv
detected’

Convergence =
return root

approximation

Write the method __getzeroes__ to store a zero or a
divergence given by __Newton__.

Task 3

Task 3
● We made a method called __getzeroes__

● The function is called with an initial guess, runs them
through the Newton method and checks if the root found in
the newton method already exists in the list xz. If it is a new
root, it will be stored in xz.

● The algorithm will return the index of the root that was
found, or the value -1 if no convergence was detected

Newton

Write the method __plot__ to run __Newton__ for multiple
initial guesses and visualize the results in a figure.

Task 4

Task 4
● In this method we created a meshgrid with the values that

we got from the input in our given NxN sized matrices
● We then use these matrices as our initial guesses when we

call our getzeros function and then put the result in a new
matrix called A

● Lastly we plot this matrix using pcolor to get our fractal

Write the method __SimplifiedNewton__ which will compute
the Jacobian only once.

Task 5

Comparison of equations

● Newton’s method ● Simplified Newton’s method

Task 5

◉ We made a method __SimplifiedNewton__

◉ It is almost an exact copy of the original Newton Method

◉ The Jacobian is calculated outside of the for-loop (saving
computer power)

◉ A Boolean parameter now allows us to choose which of the
methods we want to use when plotting

Compute the derivatives numerically for the Jacobian and add
these derivatives as an optional argument in __init__.

Task 6

Task 6
● Set up partial derivatives inside the Jacobian

● Modified the code so that the derivative argument of the
__init__ method is optional

● Tested different values of h to see if this affected the plot

Plot using increasing values for h

ItPlot more iterations needed for convergence

Write the method __iPlot__ which show dependence between
initial values and iterations needed to reach convergence.

Task 7

Task 7
● In Newton-Raphson method from an initial value reasonably

close to the actual root of a given equation. It can approximate
by the intersection of its tangent line until reach the actual
root.

● The __itPlot__ method displays the numbers of iterations in X
and Y-axis depending on a range of initial guesses, in this case
[-2,2]. Where the colours are brightest we have the most
iterations necessary for convergence.

Starting values plotted against number of iterations

Trying the code with these given functions

Task 8

Numerical Symbolic

